
The Democratization of VR-AR 111

2.2. New software

2.2.1. Introduction

The first part of this chapter revealed the multitude of equipment needed to
allow a virtual reality system to give the user the sensation of being in a
virtual world and interacting with it. Similarly, augmented reality requires
specific equipment to analyze the real world and allow the overlay of virtual
objects. The software used to build a VR-AR application must therefore make
it possible to optimally use all these devices and make them communicate
with the digital simulation that processes the information received and
computes the information to be restituted to the user. This device must
therefore simultaneously manage a large number of functions, as shown in the
interaction cycle. This cycle goes from the user’s action until the perception
of the result of this action (Figure 2.9).

���������	�
�����
��	������
����������

��	�������

�����������	���
���	����
�	������

��	
����

����� ������
 ���!������
���!�"����� �	������

�����������	���
���������

��	�������

����������	�
�����
��	�����

��������
���������

 �����#����$��%
�&���
	�'�����'�


���	�(((�

)*���������	�������	��

"�����	�&��
������+��
���	����������'�����'�

����$���(((�

Figure 2.9. Interaction cycle starting from the user’s action until the perception of the
result of this action. Developing a VR-AR application requires collecting data from
the input devices, processing this information and deducing the sensory feedback to
produce, then transmitting this information to the output devices



112 Virtual Reality and Augmented Reality

Beyond the simulation of the 3D virtual world in which the user is
immersed (in the case of VR) or which is superimposed on to the real world
(in the case of AR), the application must be able to guarantee interaction
between the user and this simulation. That is, it must be able to read the user’s
motor actions and supply the appropriate sensory information. Let us
consider, for example, a VR-based sports training tool, the objective of which
is to train a rugby defender to block an attacker who attempts to go around
him with or without a body swerve (see Figure 2.10). In order to be
successful, the application must provide a virtual adversary who reacts to the
defender’s real actions and adapts their attack. The first step for such an
application consists of collecting the defender’s movements using a motion
capture device. The motor data is then transmitted to a computer through a
driver that the application can consult via an interface called API (Application
Programming Interface). The simulation then computes the virtual attacker’s
reaction, based on the defender’s real action. This reaction by the attacker is
translated through a modification in his animation, which is then transmitted
to the output device via another API. The simulation must also manage other
parameters such as change in the immersed subject’s (user’s) point of view,
for example, due to the position of their head, if they are in a CAVE, or
through their position/orientation, if they are using a headset (see section 3.2).
The sensory feedback is then carried out by the output device or devices, here,
for instance, only through a visual feedback in stereovision in the virtual
environment that includes the attacker.

Figure 2.10. Example of the interaction in virtual reality between (a) a
real defender, fitted with a VR headset, and (b) a virtual attacker who

may or may not use a body swerve to go around him



The Democratization of VR-AR 113

Owing to the complexity of developing such VR-AR applications, it is
common to use specific software. That is why many companies have
specialized in developing solutions for a specific field. Just a few examples
are XVR Simulation [XVR 17] for training in the field of safety and security,
iris [IRI 17] for architecture, IC.IDO [ESI 17] for industrial prototyping,
ParaView [PAR 17] for the analysis and visualization of complex data,
FlowVR [FLO 17] for large-scale parallel simulation, and Augment
[AUG 17] for managing and visualizing 3D content in AR. It is therefore
possible to use this kind of “turnkey” application but, in this chapter, we will
be discussing different approaches to creating a specific VR-AR application.

In accordance with the interaction cycle, the development of a VR-AR
application can be divided into two parts. The first part, described in
section 2.2.2, consists of developing digital simulations that process
information obtained by the input devices and that compute the results to be
furnished to the output devices. The second part, described in section 2.2.3,
concerns the communication between this simulation and the input and output
devices.

2.2.2. Developing 3D applications

A VR-AR application is based on use in a 3D world in which the user is
immersed (in the case of VR) or which has been superimposed on the real
world (in the case of AR). There are many ways in which this 3D
environment can be managed and visualized, depending on factors such as
cost, development time, flexibility or even ease of use. In this section, we will
describe these different approaches, beginning with the most “basic”
programming, all the way up to specific VR-AR tools.

2.2.2.1. “Basic” graphic programming

The most elementary approach consists of creating a 3D application by
directly accessing the drivers and programming interfaces of the graphics
cards of the equipment used. The drawback of this approach is that each
application depends on the device. This difficulty may be overcome using
programming interfaces such as OpenGL or DirectX, which make it possible
to work outside of a particular type of equipment, rather than restricting
oneself to a specific device. The main advantage of this approach is that it
offers complete control over the entire creation process from the 3D



114 Virtual Reality and Augmented Reality

environment to how it is rendered graphically. It is thus possible to directly
control the facets that make up the 3D objects, to create one’s own scene
graph, the hierarchic structure used to define relations and transformations
between objects and notably manage animations or even propose new
structures. This also allows us to control the graphic pipeline, the succession
of steps required to go from calculating these facets until their final rendering,
via the elimination of the hidden parts and application of textures and
lighting. It is thus possible to choose during what step of the process this or
that action must be carried out to optimize the application’s performance.

This option therefore potentially offers the best performance as well as a
very high flexibility. However, the work required is much more complex, as it
requires the creation of the desired functionalities, the loading of the 3D
environment (resulting from a modeler such as 3DS Max or Maya, for
instance) and the recovery of data from the motion capture. The main
drawback is the inability of such an approach to be portable.

2.2.2.2. Graphic libraries

In order to avoid creating all the required functionalities, libraries such as
OpenSceneGraph [OPE 17b] offer a slightly greater control of 3D models,
thanks mainly to how they manage the loading and saving of these models,
animation methods used for the objects and also the control over lighting and
shadow, camera placement, etc. These libraries make it possible to
significantly speed up the creation of a 3D application. However, they still
remain rather restricted to specialists.

In addition, some of these libraries may depend on operating systems such
as Windows, Linux or Mac OSX. It is therefore difficult to develop solutions
that will also work on mobile telephones or on video game consoles. Finally,
in the context of VR-AR applications, one of the major problems is that they
focus on the modeling, animation and rendering of 3D objects, but very rarely
manage the associated VR-AR devices or the different sensors - all of which
are, however, important elements in an interactive application. Apart from the
cost of developing these interfaces with these peripheral devices (see
section 2.2.3.1), it is, above all, the maintenance and evolution of these
applications that pose a problem, given the extremely rapid developments in
the field of VR-AR and the constant emergence of new peripheral equipment
on the market.



The Democratization of VR-AR 115

2.2.2.3. Video game engines

With the aim of being more productive, the video game industry has, for
many years, developed generic environments called “engines”, that are central
to all their productions. These engines are now associated with highly
powerful editors that make it very easy to create 3D applications. These
editors (notably, via a graphic interface and without development) make it
possible to manage the visual layout of a scene, the sound, the camera, the
animation, etc. (see Figure 2.11). In addition, these engines work on different
platforms; computers, mobile telephones or video game consoles. Hence, they
are widely used to make games, not only on mobile telephones and video
game consoles but also for online games.

Figure 2.11. Example of the graphic editor of the game engine Unity,
which makes it possible to easily manage the visual layout of a scene,

the sound, the camera, placement, etc. For a color version of this
figure, see www.iste.co.uk/arnaldi/virtual.zip

Finally, among the many existing engines, each with its own fame and
ease of use, the best-known are: Unity [UNI 17], Unreal [UNR 17], Cry
Engine [CRY 17], Ogre3D [OGR 17] and Irrlicht [IRR 17]. Apart from the
ability to produce the same content on different platforms in very little time
and, above all, using the same application, these engines offer a large number
of functionalities that speed up the creation of these applications. These



116 Virtual Reality and Augmented Reality

include: managing all the graphic parameters related to the rendering of
objects, lighting and camera placement. However, they also additionally
permit the management of the physical simulation of objects (taking shocks
into account, for example), spatialized sound to diffuse the sound
environment by taking into account the sources of the sound, and the
animation of complex structures such as virtual humans.

Finally, these tools have resulted in a large community of users who offer
many additional resources such as tutorials to make them more accessible, as
well as the development of scripts that can widen their functionalities,
including within the field of VR-AR, as shown in the following section.
Among the engines listed above, Unity has currently emerged as one of the
major actors, due to its ease of use. It can thus be used by other communities
such as the neurosciences, Sports and Physical Activities, medicine, etc.

2.2.3. Managing peripheral devices

After having developed the heart of the application, namely simulation,
this must now be made to communicate with the user immersed in the
experience, by exploiting the peripheral input devices which acquire motor
information from the user and the output peripheral devices, which produce
sensory feedback. Just as with the creation of 3D graphic simulations, it is
possible to manage the interface with the peripheral devices at different
levels, from direct control via a programming interface to the most high-level
and most generic tools.

2.2.3.1. Direct control of peripheral devices

In order to allow an application to communicate with a peripheral driver,
the constructor provides a programming interface that gives access to all the
functions, making it possible to control this device or to exchange data with
the device. Thus, the developer only needs to call upon these functions to allow
an application to manage the peripheral devices. In practice, all equipment
differ from one another and the programming interfaces may be very varied,
including for peripheral devices that offer exactly the same functionalities. For
example, depending on whether the peripheral device is connected through a
USB port or through Bluetooth, the interface is likely to be different. Similarly,
if you have two rotation sensors developed by two different manufacturers, it is



The Democratization of VR-AR 117

highly unlikely that they will have the same interfaces, at least for the function
names.

Fortunately, certain norms have emerged resulting in standardized
programming interfaces for classic peripheral devices (keyboards, mouse,
joysticks, audio headsets or printers), which make it possible to access any
keyboard or mouse without wondering about the manufacturer of the
equipment. A change in brand does not prevent the application from working
and, above all, requires no modification of its code. Unfortunately, there is no
such standard, at present, for VR13, leading the application developer to
update their software for each new device and its associated interface. To
avoid having to update these devices for each new equipment, the developer
must construct an abstraction of the peripheral devices based on their
functionality (a motion capture sensor, for example) and then create a new
instance of this abstraction for each new equipment. In addition, the
multiplication of the links between the application and the different interfaces
increases the problems related to the management of different versions of
these interfaces and the auto-detection of each equipment used. With the
constant development of a large number of VR-AR tools, directly controlling
these peripheral devices poses a large problem to app developers in terms of
maintenance.

2.2.3.2. Libraries for managing peripheral devices
Libraries to manage peripheral devices were proposed in order to simplify

communication with these devices. They offer abstractions that make it
possible to address generic equipment offering a standardized interface rather
than equipment of one particular brand. For motion sensors, for example,
position and/or rotation information may be collected using the same
functions, regardless of the technology used by the sensor. These libraries
also offer a more or less simple means for the user to specify what peripheral
device they are currently using, or even automatically detecting this when the
application is launched. Finally, these libraries make it easy to configure
peripheral devices by specifying initial data, for example, for display on the
screens of a CAVE (see Figure 2.12) or even the initial positions of the
joystick or headset.

13 In fact, such efforts at bringing in norms have been made in VR as well as AR, but these
norms have not been applied.



118 Virtual Reality and Augmented Reality

Figure 2.12. Example for the configuration of a five-face peripheral
visualization device, using MiddleVR. For a color version of

this figure, see www.iste.co.uk/arnaldi/virtual.zip

Apart from collecting data from the input peripheral devices, some of
these libraries, such as VRPN (Virtual Reality Peripheral Network) [VRP 17]
and trackd [TRA 17], are able to take into account the equipment that is
connected to one or more computers through the network. This characteristic
makes it possible for the developer to distance themselves from the chosen
material architecture and communicate with its sensors, whether they are at a
distance (through the network) or local (the same machine). Other libraries,
such as CAVElib [CAV 17] are focused on the visual restitution of the
simulation, with the management of the changes in point of view and
stereovision on the varied projection configurations: from a simple screen to
multi-screen and multi-machine systems such as the CAVE systems. Finally,
some libraries propose managing all these different peripheral devices such as
OSVR (Open-Source Virtual Reality for gaming) [OSV 17] or MiddleVR
SDK [MID 17] and TechViz [TEC 17], which are libraries that are equipped



The Democratization of VR-AR 119

with a middleware, which is an external software positioned at the interface
between the application and the equipment. In this case, its role is to provide a
software interface to easily configure the different equipment that is to be
used with the same software application.

As concerns AR, several libraries offer specific functionalities such as the
evaluation of the position and orientation of the user in interactive time in real
space. OpenCV [OPE 17a] makes it possible to acquire and process the
images, from the detection of structures ranging from lines to complex motifs.
All these functionalities make it possible to superimpose a 3D virtual object
onto the real world observed by the user. The largest libraries are
ARToolkit [ART 17], Vuforia [VUF 17] and Wikitude [WIK 17], which offer
all the functionalities described above, managing mobile platforms and
VR-AR headsets, and offer interfaces for the development tools (see
section 2.2.4.2). Apple’s ARkit will be launched in September 2017,
providing the same functionalities to platforms based on iOS.

2.2.4. Dedicated VR-AR software solutions

Other higher-level software solutions propose integrating the management
of 3D environments and peripheral devices in order to simplify the creation of
the VR-AR application.

2.2.4.1. Dedicated tools for the creation of VR-AR

Some graphic tools can be used to simplify the process of creating VR-
AR applications. For AR, for example, Wikitude offers developers an SDK
on which a software solution can be constructed, which allows the recording
of images to be recognized and then the content to be associated with these
images without programming or even publishing the applications in one’s own
virtual shop.

The Eon Creator software, distributed by the company Eon
Reality [EON 17], offers a similar VR-AR solution, which makes it possible
to select 3D models, interact with these models and easily diffuse this
content. It also offers a complete development environment to manage
functionalities similar to those of video games, such as feedback and physical
simulation. In addition to a similar development environment, the WorldViz
software [WOR 17] makes it possible to manage peripherals with different



120 Virtual Reality and Augmented Reality

projections and/or multiple users, etc. It also offers configurations embedded
in the equipment.

These tools dedicated to the creation of VR-AR applications remain small
in number, however. Indeed, editors must dedicate a large number of
resources to developing them. Restricting them only to VR-AR limits their
use to a rather niche market today, which makes it difficult to make these
solutions competitive with respect to a generic game engine reinforced with
plugins.

2.2.4.2. VR-AR plugins for video game engines

Section 2.2.2.3 described the emergence of video game engines for the
creation of 3D application content. Even though this software is not originally
meant for VR-AR, their ease of use, their multiple functionalities and their
openness to developing additional scripts ensure that they are relevant
reference tools in these fields. Indeed, to compensate for the absence of
management of the peripheral devices, which are one of the main components
needed to use an interactive application, the developer community that uses
these tools first created specific plugins based on the programming interfaces
used by the constructors. With the large rise in numbers in this community,
constructors now directly offer plugins to communicate with their new
models as soon as these are launched and sometimes engines even integrate
them as native tools as is the case with the Oculus and HTC Vive headsets and
the Unity software.

Other companies offer more generic plugins used to manage peripheral
devices, which are directly integrated into these motors. These plugins also
extend existing functionalities with advanced management of stereoscopy,
multi-computer synchronization in a cluster, force-feedback peripheral
devices and managing multiple users in virtual reality. Some actors have
developed generic libraries (see section 2.2.3.2) for output peripheral devices,
such as getReal3D, or for all peripheral devices, such as MiddleVR for Unity
or Techviz. Similarly, for AR, there are libraries such as Vuforia or Wikitude.

2.2.5. Conclusion

VR-AR applications are increasingly being developed with the help of
video game engines such as Unity. Indeed, constructors now directly offer



The Democratization of VR-AR 121

plugins that communicate with their new peripheral devices and generic
integrated solutions also exist, such as MiddleVR for Unity. This type of
development makes it possible to implement solutions much more rapidly and
at a lower cost, and to adapt them to the new peripheral devices without even
recompiling the application. In addition, and most importantly, they make it
possible to easily manage the addition of a new peripheral device, which is
essential given the continuous development of new, low-cost VR-AR devices.

2.3. Bibliography

[ART 17] ARTOOLKIT, “ARToolkit”, artoolkit.org, 2017.

[AUG 17] AUGMENT, “Augment”, www.augment.com, 2017.

[AZU 97] AZUMA R.T., “A survey of augmented reality”, Presence: Teleoperators and
Virtual Environments, vol. 6, no. 4, pp. 355–385, August 1997.

[CAV 17] CAVELIB, “CAVElib”, www.mechdyne.com/software.aspx?name=CAVELib,
2017.

[CRU 92] CRUZ-NEIRA C., SANDIN D.J., DEFANTI T.A. et al., “The CAVE: audio visual
experience automatic virtual environment”, Communication ACM, vol. 35, no. 6, pp. 64–72,
ACM, June 1992.

[CRU 93] CRUZ-NEIRA C., SANDIN D.J., DEFANTI T.A., “Surround-screen projection-
based virtual reality: the design and implementation of the CAVE”, Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques, ACM, pp. 135–142,
1993.

[CRY 17] CRY ENGINE, “Cry Engine”, www.cryengine.com, 2017.

[EON 17] EON REALITY, “EON Reality”, www.eonreality.com, 2017.

[ESI 17] ESI GROUP, “IC.IDO”, www.esi-group.com, 2017.

[FLO 17] FLOWVR, “FlowVR”, flowvr.sourceforge.net, 2017.

[FRE 14] FREY J., GERVAIS R., FLECK S. et al., “Teegi: tangible EEG interface”,
Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology, UIST’14, New York, USA, ACM, pp. 301–308, 2014.

[FUC 05] FUCHS P., MOREAU G. (eds), Le Traité de la Réalité Virtuelle, Les Presses de
l’Ecole des Mines, Paris, 2005.

[FUC 09] FUCHS P., MOREAU G., DONIKIAN S., Le traité de la réalité virtuelle Volume 5
- Les humains virtuels, Mathématique et informatique, Les Presses de l’Ecole des Mines,
Paris, 2009.

[IRI 17] IRIS, “iris”, irisvr.com, 2017.

[IRR 17] IRRLICHT, “Irrlicht”, irrlicht.sourceforge.net, 2017.


